
A Novel Course in Data Systems with Minimal Prerequisites
Thomas C. Bressoud

Denison University
Granville, Ohio

bressoud@denison.edu

Gavin Thomas
Denison University
Granville, Ohio

thomas_g8@denison.edu

ABSTRACT
The need for understanding data systems, from the structure and
constraints of data models to the client-server mechanisms for
acquiring and curating data, includes not just computer science
students, but extends to data science students and students in a wide
range of interdisciplinary programs. In this paper we describe the
design and implementation of a second course in computer science,
whose data-centric focus emphasizes structural models of data and
the skills involved in acquiring and transforming data into forms
amenable for analysis. We argue that, from a user-not-designer
perspective, these topics need not wait for an upper-level database
course, but to achieve sufficient depth, an introductory computer
science course is appropriate and sufficient as a prerequisite.

CCS CONCEPTS
• Information systems→ Relational database model;Hierarchical
data models; Semi-structured data; RESTful web services; •Networks
→ Network design principles; Application layer protocols; • Com-
puter systems organization → Client-server architectures;

KEYWORDS
Computer science education; CS2; data science; curriculum; data
models; client-server

ACM Reference Format:
Thomas C. Bressoud and Gavin Thomas. 2019. A Novel Course in Data
Systems with Minimal Prerequisites. In Proceedings of the 50th ACM Tech-
nical Symposium on Computer Science Education (SIGCSE ’19), February
27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3287324.3287425

1 INTRODUCTION
The sources and forms of data, along with the demand for acquiring,
processing, and analyzing that data are increasing at a prodigious
rate[1, 3, 6]. From a curricular perspective, majors, programs, and
courses are being designed to enable interested students to under-
stand these topics and prepare themselves for the practice of these
associated data skills[2, 5, 8, 14]. As the sources and forms of data
increase, with a commensurate increase in the data providers and
interfaces for accessing data, so too must our interpretation of what
constitutes a data system[4].

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5890-3/19/02.
https://doi.org/10.1145/3287324.3287425

The student audience for such curricular efforts is broadening
as well. We identify three student constituencies:

Computer Science: students recognizing the value of acquir-
ing and transforming data, and the synergy of this activity
with the systems and algorithmic problem-solving aspects
of the computer science discipline.

Data Science/Data Analytics: students pursuing these new
and emerging undergraduate majors, who desire to build
algorithmic and practical skills with an eye towards enabling
data exploration, visualization, statistical analysis, and appli-
cation of machine-learning techniques for use in coursework
as well as in practicums and internships.

Multidisciplinary/domain-centric: students whose focus is
on practical aspects of acquiring and transforming data for
use in their own disciplines. These include students in social
sciences as well as natural sciences, and often these students
want to learn this material as a prelude to a "methods" course
specific to their discipline.

Others[8] have called the union of these audiences the "data-
centric" audience, and we extend this idea to define the set of
data-related topics and the desired level of understanding the data-
aptitude for these students. We see two primary dimensions to
data-aptitude, corresponding to the sources and forms of data. Data
sources range from local files to relational databases to network-
based data providers. Data forms, provided by data sources, range
from comma-separated-value flat files to the tables within a rela-
tional database to XML and JSON to unstructured data and HTML.
Data sources may be further distinguished by the protection and
privacy associated with the data they provide. Some data is explic-
itly open and freely available, while other data may be limited to
use by particular applications, and still other data may be comprised
of protected resources of one or more authorized resource owners.

Many of the topics associated with data-aptitude have homes
spread through the computer science curriculum. In the ACM cur-
ricular guidelines [9], the InformationManagement (IM) knowledge
area includes relational databases and data models; the Network
Computing (NC) and Systems Foundations (SF) include aspects of
client-server computing and the protocols upon which the APIs for
accessing provider data are built.

In curricular guidelines [13], and in many actual majors [9],
parts of this material can be found in a Database Systems course.
Such courses are strong on the relational data model, emphasize
normalization and design of schema to enforce desirable properties
and constraints, and often include mathematical underpinnings
of the model and systems design aspects allowing for efficient
realizations of database systems.

Database systems courses typically require prerequisites of a
CS1 class, an Intro to Systems/Computer Organization class, a Data

Paper Session: Data SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

15

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 
International 4.0 License.

https://doi.org/10.1145/3287324.3287425
https://doi.org/10.1145/3287324.3287425
https://creativecommons.org/licenses/by-nc-nd/4.0/


Structures class, and a class and/or material in discrete mathematics
supporting sets and relations, and so the database systems class is
most often not taken until a student is in the late stages of their
educational career. In smaller institutions, based on rotations of
class offerings, a student may not be able to take a database systems
class at all. Being able to actually use the database-relevant material
in projects or other classes is not possible. And because of its focus
on the relational model and the systems design aspects of efficient
database system realizations, it is too narrow to satisfy the needs
defined for data-aptitude.

At the other end of the spectrum, and recognizing the needs of
data-aptitude and the growing audience of data-centric students,
recent efforts have focused on incorporating data-aptitude as part
of the CS1 experience. At St. Olaf, Hall-Holt and Sanft have incorpo-
rated aspects of data acquisition and analysis along with statistics
in an introductory "statistics-infused" CS offering [8]. Anderson et
al. use Data Programming in a CS1 class [2]. More broadly, Kaplan
has written about teaching computation to undergraduates across
the natural and social sciences [10] with a data focus and has a
book that uses R and Data Computation for introductory computer
science/data science[11]. Earlier work by Sullivan also uses a data
centric introduction to computer science and targets the broader
non-majors audience [14].

There are some clear advantages to such CS1+data approaches.
Students are introduced early to data-aptitude topics alongside
algorithmic problem solving. By learning some of this material in a
first course, students can bring this newfound knowledge to bear
in downstream courses and projects. And clearly it helps to address
the need of the growing population of the data-centric student
audience. Additionally, having introductory computer science and
data-aptitude in a single course has significant appeal on already-
crowded majors, including new data science majors as well as
students with a data focus in majors in the other natural and social
sciences.

Unfortunately, such an all-in-one solution can come at a price:
toomuch content for a single course. Students can feel overwhelmed
when data-aptitude content and goals are added to the existing
content and goals of an introductory computer science course. Stu-
dents have difficulty in differentiating the competing aspects of
what they are learning, from algorithmic problem solving, program-
ming language syntax, separation of internal/memory resident
data structures from external files and formats, statistics, and data
acquisition through various means, from files to URL s to more
complex networking-based communication exchange. There is also
the significant danger that, for the data topics, we try to simplify by
"teaching to an interface", focusing on the calls and arguments for
a supporting package, and de-emphasizing the underlying systems
principles and implementations that are beneath the surface.

To simultaneously solve many of the disadvantages of a late-
curriculum and narrow database systems course as well as the
content overload and potential lack of data-aptitude depth of a
CS1+data approach, we advocate for an early data systems course
with a prerequisite of a CS1 class. We define data systems broadly,
including relational database systems as well as those systems pro-
viding data across the Internet in a client-server manner in the form
of web service APIs, like REST (REpresentational State Transfer)[7].
This course differentiates and focuses on the understanding and

using of these data systems, rather than the design of such systems,
allowing us to shed much of the material that would be contained
in a database systems course. This course would not replace the
database systems course; rather, with only a 20% content overlap, it
would provide students a foundational understanding of the topics
at an earlier stage in their education.

This course employs data models as a framework for learning
about the various forms of data, from a simple tabular model with
appropriate constraints to the relational data model to a hierarchical
data model as needed by our definition of data-aptitude. In the
data sources dimension, the course follows a progression of data
sources, starting the students with local files, moving on to aMySQL
database server as representative of relational databases, and then
covering more advanced client-server interaction over HTTP using
provider APIs, and also extracting data from HTML and addressing
protected resources. In this way, we feel we can cover the topics of
data-aptitude in sufficient depth beyond a single CS1+data course,
while keeping material broad and applicable to the wide range of
data-centric students.

Intro Data 
Science

Math 
Foundations

Applied 
Statistics

CS1

Data 
Systems

Intermediate and Upper Level Curriculum

CS1

Data 
Systems

Intermediate and Upper Level Curriculum

CS2

(a) Computer Science (b) Data Science/Analytics

Figure 1: Curricular Context for Data Systems Course

In Figure 1, we show in (a) our proposed course in the context
of the early part of a computer science major. Note that we are
not replacing a program’s CS2 course, but rather suggest a second
course that could be taken concurrently with a traditional CS2. In
summer of 2016, the Park City Math Institute held a three week
program for Undergraduate Faculty on developing guidelines for
a Data Science curriculum[5]; in (b), we show a permutation of
that curriculum and show our proposed course within it. This fits
well with the guidelines’ desire for a second course in computer
science centered around data acquisition and curation. One could
also envision the two course sequence of CS1 followed by our
proposed course as an excellent fit for the multi-disciplinary/non-
major student constituency.

Our institution and department has designed and, in the 2017-
2018 academic year, implemented such a course, supporting a
broader systems experience for our computer science students and
integral to our institution’s emerging data analysis (DA) major. This
new course is now required for both majors.

2 COURSE CONTENT
The Data Systems Architecture, as illustrated in Figure 2, enables
us to see the elements of the course content. As introduced in
Section 1, the two primary dimensions of course content involve
the sources of data from data systems and the forms of that data.
On the right side of the figure, we depict the primary data sources,
that of local files, database systems, web servers, and providers
exporting APIs by which their data may be accessed. Each of the

Paper Session: Data SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

16



Data System 
Providers

Database 
System

DB Tables

Data System 
Client/Application

Web
Server

HTML and
 Flat Files

API
Service

Tree Files
Flat Files

Middle 
Tier

Local
Files

Data
Acquisition

Network
Data

Normalization

Analysis

In-Memory 
Structures

Normalized
In-Memory 
Structures

DB Tables

Figure 2: Data Systems Architecture

sources may deliver their data in one or more of the data forms
covered in the course. The left side of the figure depicts the main
phases of the data pipeline necessary for client applications that are
on the consumer side of data systems. The process starts with data
acquisition, which may come from local files, or over the network,
and proceeds to data normalization, where the data is transformed
to satisfy constraints and to put it into a form amenable for analysis.

2.1 Data Models
We use data models as the framework bywhich we cover the various
forms and associated formats of data. A data model consists of:

• structure: typically one or more two-dimensional structures,
or a tree structure,

• operations: given the structure, how do we extract, modify,
and transform data in that structure, and

• constraints: within the structure, what are the legal data
types, legal values for elements, and legal relationships be-
tween some elements and one or more other elements.

This course investigates three data models, starting with a simple
tabular data model, progressing through the relational data model,
and then covering the hierarchical data model.

Tabular DataModel. The tabular data model focuses on primarily
single table datasets with row and column dimensions. In this model,
we are interested in in-memory representations of tabular data with
sufficient power in their operations to allow extracting and updating
subsets of rows and columns, working with columns as vectors,
and transforming from one tabular representation to another. In
Python, we use the pandas module to provide such facility.

To enable effective analysis, which includes partitioning data,
computing on partitions, and combining results[15], the data must
conform to particular constraints, with variables representing columns,
and rows defining appropriate functional dependencies between
independent variables and dependent variables1. Data can be repre-
sented in tables in many different ways, but most do not conform
to these constraints, and, in the tabular model, constraints are not
1Called tidy data[16] by the data science community.

enforced, but are merely a convention. So the course must teach
recognition of violations of the model constraints, and how to trans-
form into its normal form.

The course starts from CS1 topics of two-dimensional data struc-
tures using native Python data structures, like lists of lists and
dictionaries of lists. We begin with basic line-by-line processing of
flat delimited files as a way of building into the topic. This corre-
sponds to the upper right part of Figure 2 with data acquisition from
local files. Coverage of the model progresses through various tech-
niques of transforming and normalizing the data2, thus allowing
for exploration/visualization and downstream analysis. Transfor-
mation and other complex operations are discussed algorithmically,
to allow generalization to other languages and packages. At the end
of this section, students are given a project with real-world datasets
that they must understand and normalize to allow visualization
and communication/interpretation of the underlying data.

Relational Data Model. One of the most important forms of data,
and its associated data model, is the relational database system
and model. Grounded in nearly 50 years of development and an
important element of many larger systems, we cover this model
from a primarily client/user perspective. This corresponds in Fig-
ure 2 to the second source on the right of the data system providers
and, on the left, by using SQL as part of data acquisition and then
transforming results into appropriate in-memory structures.

By using the tabular data model as a foundation, we start with
projecting columns and selecting rows from single relations/tables,
drawing parallels with the prior material, and seeing some of the
differences of a declarative versus procedural style of operation.
We then extend to multiple tables using join operations to see how
the relational model uses constraints on foreign and primary keys
to build one-many and many-many relationships.

Utilizing existing well-designed databases as examples, we cover,
at an intuitive level, various aspects of sound database design. We
use elements of the convention-based constraints of the tabular
model to arrive at an intuitive understanding of third normal form.
By using database schema, the students see the benefit of design
preceding data population, and how a database system can enforce
many of the desired constraints in this model, to avoid errors before-
the-fact. Coverage of this section concludes with simple, but sound,
database design, table creation, and row insertion for some existing
datasets derived from the earlier section on the tabular data model.

The relational data model is reinforced and content synthesized
in the student’s second project, in which they have access to a few
significantly large relational databases and conceive of and build
queries of significant complexity, and interpret results.

Hierarchical Data Model. When we interact with data systems on
the Internet, many providers structure and represent provided data
in a flexible form based on a tree data model. Dominant specific
examples include XML and JSON formats, but the tree inherent in an
HTML document is another significant example. These correspond,
in Figure 2, to the "Tree Files" and "HTML Files" in the lower two
providers types on the right side of the figure. Data acquisition for
tree formatted files can also be provided by local files.3

2Variously called cleaning, wrangling, and munging by the data science community.
3We use the lxml module to support this data model.

Paper Session: Data SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

17



Given a tree or subtree, the operations of this model include
procedural tree traversal and the extraction of data (tags, text, and
attributes) from the nodes of the tree. This model also gives us the
opportunity, on the XML and HTML side, to look at declarative
operations using XPath. We are also able to see how trees can repre-
sent both the notion of a single table, or a set of tables, all within a
single file. Constraints in this model are either by convention, or can
be explicit, using mechanisms such as Document Type Definition
(DTD), or an XML Schema Definition (XSD).

Unstructured Data. Much of the time, data may not be structured
in one of the covered forms, and a client, after data acquisition, must
perform advanced pattern matching and extract fields of data out of
one or more unstructured collections of data. To accommodate this
reality, the course includes a unit on pattern matching and regular
expressions. The focus is on recognizing the patterns that exist in
unstructured data and understanding the tools by which the data
can be extracted, regex capture groups, for instance. Using these
tools, students build tabular data structures from unstructured data.

2.2 Data Sources
As described above in both the tabular data model and the hierarchi-
cal data model, we begin with local files to build our understanding
of the model before we move into more complicated means of data
acquisition. We progress from there, during coverage of the rela-
tional model, to an external database management system as the
source of the data. We use a MySQL server available on the local
network and shared by all the students in the class. Each student
has their own login, within which they can CREATE and INSERT
in tables, and each has SELECT access to numerous databases and
tables used in the class. Students learn the various parts of the URL
employed as a connection string to establish communication with
the database and are introduced to basic networking ideas like a
machine and its address, and a protocol by which a client makes
requests that are processed and result in a response by the server.
They also see, by example, the notion of data resources having an
ownership (the user) and protection for these owned resources.

Our next source of data are web servers, corresponding to the
middle provider type on the right side of Figure 2. Students learn
the basics of the HyperText Transfer Protocol (HTTP) as a network
client that must specify the machine and protocol for a connection
over the network. They then must construct and issue requests
(GET and POST) and be able to retrieve and understand the con-
stituent parts of the meta-data and data of the response. This type
of data source can provide delimited flat files, HTML files, or even
XML/JSON files. Given this data source, and combining with the
knowledge from the hierarchical data model, students combine
these to understand web scraping as an application of these ideas.

With the foundation of HTTP, we then turn to API-based data
providers4, as represented by the bottom right of Figure 2. We
extend our understanding of the resource path part of a URL in an
HTTP GET or POST to give an endpoint of a provider, and the use of
URL parameters and HTTP header key/value pairs to parameterize
requests made of an endpoint. We can then extend our ideas about
authentication and authorization to allow for client applications as

4We focus on RESTful APIs as appropriate for students in this class

an entity that can be authenticated and resources from a provider
as being "owned" by a principal, who may not be the same as the
writer of the application. We use OAuth with real-world providers
to facilitate this material.

2.3 Classroom Approach
Because of the importance of visualization in exploring acquired
data, asking interesting initial questions about a dataset, and com-
municating such pre-analysis to an audience. We employ the use
of Tableau, software available both online and in desktop version,
as a powerful tool for generating such visualizations. Once data is
in a normalized form from our tabular data model, it is relatively
straightforward to build quality visualizations, and the students in
this class employ Tabeau in all of their projects.

We use real-world datasets for all projects and most of the ex-
amples and practicums in the course. There is an abundance of
data, and one of the goals of the course is to understand how to
take "messy" real-world data and, in a clear and systematic way,
normalize it into a usable form.

In addition to the projects associated with the tabular and re-
lational data models, we use a synthesis final project. Students
must employ most of the aspects learned in the class, from using
multiple providers, and at least one of those providers must hold
protected resources, and the students must engage OAuth to gain
authorized access to these resources. Students must build a sim-
ple, sound database with data derived from their data acquisition
and data normalization. Finally, students must visualize and ask
interesting questions of their data.

The topics covered by week in the semester are give in Table 1:
Week Topic Coverage

1 Python Foundations and Review
2 Tabular Model Structure and Operations using pandas Module
3 Tabular Constraints/Tidy Data Recognition and Transformation
4 Relational Database Access and Single Table SQL
5 Relational Database Multiple Table Joins, Grouping, and Aggregation
6 Programming in sqlalchemy and Sound Database Design
7 Regular Expressions; Networking Fundamentals
8 HTTP Definition and use with the requests module
9 Hierarchical Model - Structure, Operations, JSON Intro
10 XML and XPath using lxml
11 HTML and Web Scraping
12 Authentication, Authorization and OAuth2
13 Basic REST API Services
14 Authorized REST API Services

Table 1: Course Topics by Week

3 INAUGURAL YEAR STUDENT AUDIENCE
In the 2017-2018 academic year, we offered a total of four sections
of data systems, each capped at 24 students – three sections in Fall
2017, and one in Spring 2018. All sections filled, and, after initial-
semester attrition, we ended with a population of 64 students in Fall
2017 and 26 students in Spring 2018. From an initial class survey,
we describe the basic demographics of the student audience in this
section, along with their self-reported confidence/proficiency in
some of the topics assumed from the CS1 prerequisite.

Over the four sections, 52% of the students were sophomores,
41% were juniors, and 7% were seniors. The number of juniors
and seniors is expected to reduce as we move forward, with fewer
upperclass students needing to satisfy this new requirement. The

Paper Session: Data SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

18



female/male ratio in this initial year was 20%/80%, but our data
analytics offerings have been showing more diverse appeal, and so
we hope our ratio of females taking this course will increase.

Because of the DA major introduction in the prior academic year,
and the addition of this course as a required in the computer sci-
ence major, there was a backlog of demand, including from students
further along in their program. We expect, in subsequent offerings,
for the class year distribution to shift toward predominantly sopho-
mores, as opposed to the 52% sophomore and 41% juniors seen in
this first year.

Majors, as a percentage of the class population, differed signif-
icantly between the two semesters, as can be seen in Figure 3. In
the fall, nearly 60% of the students were computer science majors,
and only 32% were data analytics majors. In the spring, these ratios
swapped. In Section 1, we identified three student constituencies,
the CS students, the data analytics students, and the multidisci-
plinary students. Our data-analytics program emphasizes interdis-
ciplinary integration, and so the data analytics majors shown here
are really a mix between the data analytics and multidisciplinary
constituencies. We do hope that demand from students in other
majors ("Other" in the graph) will increase as we move forward.

Figure 3: F17 and S18 Distribution by Major
We decided to use Python in a single language approach to this

data systems class, because it is taught in our CS1 courses. This
allows students to focus on the topics we present, rather than need-
ing to also learn a new language. In the initial survey, designed
to understand sufficiency in CS1 topics and to aid in some initial
review, we asked students their self-assessed level of understanding
in a number of the Python programming topics. In particular we
asked students to assess their proficiency in the usage and meth-
ods of strings, lists, and dictionaries, the usage and construction
of two-dimensional data structures, and creation of basic graphs
through plotting packages. Figure 4 shows the results of these sur-
vey questions, where students ranked their proficiency on a 1 to 7
scale (bigger is better).

On the positive side, for all six topic areas, the significantmajority
of the distribution is at ratings of 5-7. Students clearly felt most
proficient in lists and strings, followed by dictionaries and objects.
The distribution of proficiency on graphics has greater spread, as
does two-dimensional representations. Given coverage late in our
CS1 offerings, this is not unexpected.

4 EVALUATION AND STUDENT FEEDBACK
We employed multiple surveys to gather student feedback on in-
terest and efficacy of this course. Students were given an initial
survey, to gather demographics and solicit feedback on proficiency

Figure 4: CS1 Topic Proficiency

in CS1 topics and opinions on the expected usefulness of the data
systems topics. Students were also given surveys mid-semester
and end-semester, asking about learning outcomes in each of the
covered topics. Finally, we conducted a follow-up survey aligned
near the end of students’ summer experiences to help understand
applications of the course materials to courses, internships, and
projects after the class was over.5 Out of 90 total students, 85 re-
sponded to the initial survey, 72 to the mid-semester survey, and
64 to the end-semester survey. The post-survey only went out to
students who agreed to be contacted for follow-up, and we received
29 responses from 60 such students.6

Figure 5: Usefulness and Understanding by Topic
Figure 5 shows percentages of respondents rating, on a 1-5 scale,

for each of five central topic areas. In the top row of the figure,
students rate their expectation on the usefulness of the topic, prior
to coverage. In the bottom row, students self-assess their under-
standing of the topic material after coverage. The first, second, and
fourth column correspond to the data models covered in the course.
The column headed RegEx corresponds to coverage of regular ex-
pressions, addressed in the course for handling unstructured data.
The final APIs column encompasses both simple web server access,
as well as more complex authenticated and authorized REST APIs.
Even before coverage, students’ expectations were high for the
usefulness of all of these topics, with Relational and APIs as the
perceived "most useful". Further, their self-assessed level of under-
standing is quite good across all five topics. Using total percentage
of 4 plus 5 ratings as a metric, Relational is at the top with 89% 4s
and 5s, Hierarchical, Tabular, and RegEx are in the middle at 84%,
82%, and 74%, respectively, and understanding of APIs at 67% 4s
5All surveys were anonymous, were with informed consent, were completed without
the instructor in the room, and students were reminded that they always had the
choice to not take the survey.
6For a solicitation to students during their summer, we felt a nearly 50% response rate
quite good.

Paper Session: Data SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

19



and 5s. These are very positive outcomes of the course, and support
our thesis that this approach of a broad-based introduction to data
systems is sufficiently accessible given the foundation of a CS1
course.

The post-survey was undertaken after receiving unsolicited feed-
back from students describing how they had employed data systems
course learning in internships, personal projects, and research ex-
periences after the course was completed. To avoid anecdotal and
biased reporting, we designed and sent the post survey out to the
broader audience of students from all sections asking, in particu-
lar, whether students had employed what they had learned in the
course, if so, in what kinds of post-course activity, and then, to rate
the importance of the data systems class topics in the context of
their post-course work. Of the 29 respondents, 27 (93%) indicated
use of these topics in some post-course project or activity, and most
applied their learning in multiple activities. Of these, 44% used
their skills in projects for other courses, 60% in internship or REU
experiences, and an amazing 78% in personal or outside projects.

Figure 6: Post Project Importance by Topic
In Figure 6, we depict both the usage of each of the course topic

areas and their importance in the post-course project. The usage is
shown in each topic column as an annotated percentage and count
(out of 29) that employed that topic area in their project. Given that
a student used the topic area, we asked how important the topic
was to their work. We can see that 76% of the students used Tabular
(structure and cleaning/normalization) in their projects and that it
was considered very important in the work. Regular expressions
were used by a significant number of students, but their importance
would appear to have been secondary. APIs, when used, were quite
important. And the hierarchical model was used least at 48%, with
more of a spread in importance. These numbers clearly support
both the selection of content in our course design and, by the fact
that so many students have integrated their learning so quickly into
work following the class, both within and outside their academic
endeavors, clearly argues for such a course being early in their
curriculum.

Category 1 2 3 4 5 1 2 3 4 5
Effort 0 2% 4% 45% 49% 0 0 5% 25% 70%
Knowledge 0 2% 9% 32% 57% 0 0 0 20% 80%
Challenge 0 0 13% 40% 47% 0 0 10% 30% 60%
Overall 2% 4% 28% 42% 25% 0 0 5% 35% 60%

Table 2: Course Evaluation Results

Table 2 presents the results of the standard university course
evaluations for the two offered semesters. Ratings are on a 1 to 5
scale and, for comparison, we use percentages of counts for each
category. The number of evaluation respondents was 52 for the fall
(on the left) and 20 for the spring (on the right). In both semesters,
students were challenged by the material of the class, and signifi-
cant effort was required. The knowledge and overall ratings differ

between the two semesters, with both having greater spread, and
a few students giving the fall instance of the course as low as a 1
or 2. The overall ratings and knowledge were remarkably good for
the spring instance of the class. From the instructor’s point of view,
the course improved between the two semesters. Based on the fall
feedback, some material was reduced and refined, and there were
some changes to the ordering of topics as well.

In the post-survey, we asked students, with the benefit of hind-
sight after the course was complete, how they would compare their
learning in this course to other courses at the university, and how
they would rate the course overall. The course comparison question
received 14 (48%) ratings of 6 and 12 (35%) ratings of 7, on a 7 point
scale. The hindsight rating of the course overall received 13 (45%)
ratings of 4 and 14 (48%) ratings of 5, on a 5 point scale.

When asked in the post-survey to describe their projects and
how they had used what they learned, we received a rich set of
answers. Some of these internship experiences include students
working in physics, actuarial science, data science, banking, soft-
ware engineering, academic research, and even for the government.
Personal projects include stock market analysis, Chicago speed
camera analysis, creating Twitter bots, personalizing Spotify, IMDb
movies analysis, ESPN baseball analysis, and many more. The in-
teresting and diverse responses, and the excitement conveyed by
the students has been perhaps the most rewarding aspect of this
undertaking.

5 CONCLUSIONS
The course, in design and in result, has been very successful, but it
also has had its challenges. First and foremost involves the resources
for students to use in the class. There is no single textbook that
covers our desired topics. Books on database systems are too narrow
and contain much material that we do not cover. Books on Python
modules teach skills focused on a particular interface and lack
the framework of the data models or the generality to see how a
new interface or different language might accomplish the same
goals. Instead, we relied on many online resources in combination
with a significant number of Jupyter notebooks [12] written to
both engage the students and to convey material. Some students,
with good note-taking and skills at managing this disparate set of
resources, adapted well, but for others it was a significant challenge.
The second biggest challenge was trying to “do too much” in the
fall version of the class. We reduced student workload somewhat,
dropped a few secondary topics, and reordered slightly, to allow
some of the more interesting data sources dimension of the class to
occur earlier in the semester. These adjustments made a significant
difference for the spring semester.

In summary, we have designed and developed a new data systems
course that addresses the needs of our curriculum, introducing sys-
tems topics earlier and allowing downstream use of the knowledge
gained. The course addresses the needs of the growing data-centric
audience with a foundation of data-aptitude that can be imple-
mented in institutions with data science programs or traditional
computer science programs. We cover a significant range of top-
ics in both the forms and the sources of data. Finally, we avoid
content-overload and can attain greater depth by relying on a CS1
prerequisite.

Paper Session: Data SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

20



REFERENCES
[1] 2017. White paper: Top Ten Big Data Trends. Technical Report 849188. Tableau

Software.
[2] Ruth E. Anderson, Michael D. Ernst, Robert Ordóñez, Paul Pham, and Ben Tribel-

horn. 2015. A Data Programming CS1 Course. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education (SIGCSE ’15). ACM, New
York, NY, USA, 150–155. https://doi.org/10.1145/2676723.2677309

[3] Randy Bean. 2015. Making the Case for the ’Long Tail’ of Big Data. Wall Street
Journal (Aug 2015).

[4] Peter Cornillon. 2005. What Is a Data System, Anyway? EDUCAUSE Review 40,
2 (March/April 2005), 10–11.

[5] Richard D. De Veaux, Mahesh Agarwal, Maia Averett, Benjamin S. Baumer,
Andrew Bray, Thomas C. Bressoud, Lance Bryant, Lei Z. Cheng, Amanda Fran-
cis, Robert Gould, Albert Y. Kim, Matt Kretchmar, Qin Lu, Ann Moskol, Deb-
orah Nolan, Roberto Pelayo, Sean Raleigh, Ricky J. Sethi, Mutiara Sondjaja,
Neelesh Tiruviluamala, Paul X. Uhlig, Talitha M. Washington, Curtis L. Wes-
ley, David White, and Ping Ye. 2017. Curriculum Guidelines for Undergradu-
ate Programs in Data Science. Annual Review of Statistics and Its Application
4, 1 (2017), 15–30. https://doi.org/10.1146/annurev-statistics-060116-053930
arXiv:https://doi.org/10.1146/annurev-statistics-060116-053930

[6] Peter ffoulkes. 2017. White paper: InsideBIGDATA Guide to The Intelligent Use
of Big Data on an Industrial Scale. Technical Report. insideBigData. https:
//insidebigdata.com/2017/02/16/the-exponential-growth-of-data/

[7] Roy T. Fielding and Richard N. Taylor. 2000. Principled Design of the Modern
Web Architecture. In Proceedings of the 22nd International Conference on Software
Engineering. IEEE, 407–416.

[8] Olaf A. Hall-Holt and Kevin R. Sanft. 2015. Statistics-infused Introduction to
Computer Science. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (SIGCSE ’15). ACM, New York, NY, USA, 138–143.

https://doi.org/10.1145/2676723.2677218
[9] Association for Computing Machinery (ACM) Joint Task Force on Comput-

ing Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
ACM, New York, NY, USA. 999133.

[10] Daniel T. Kaplan. 2004. Teaching Computation to Undergraduate Scientists.
In Proceedings of the 35th SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’04). ACM, New York, NY, USA, 358–362. https://doi.org/10.
1145/971300.971424

[11] Daniel T. Kaplan. 2015. Data Computing: An Introduction to Wrangling and
Visualization with R. Project MOSAIC.

[12] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol
Willing. 2016. Jupyter Notebooks – a publishing format for reproducible com-
putational workflows. In Positioning and Power in Academic Publishing: Players,
Agents and Agendas, F. Loizides and B. Schmidt (Eds.). IOS Press, 87 – 90.

[13] Task Group on Information Technology Curricula. 2017. Information Technol-
ogy Curricula 2017: Curriculum Guidelines for Baccalaureate Degree Programs in
Information Technology. ACM, New York, NY, USA.

[14] David G. Sullivan. 2013. A Data-centric Introduction to Computer Science for
Non-majors. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education (SIGCSE ’13). ACM, New York, NY, USA, 71–76. https://doi.
org/10.1145/2445196.2445222

[15] Hadley Wickham. 2011. The Split-Apply-Combine Strategy for Data Analysis.
Journal of Statistical Software, Articles 40, 1 (2011). https://www.jstatsoft.org/
v040/i01

[16] Hadley Wickham. 2014. Tidy Data. Journal of Statistical Software, Articles 59, 10
(2014), 1–23. https://doi.org/10.18637/jss.v059.i10

Paper Session: Data SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

21

https://doi.org/10.1145/2676723.2677309
https://doi.org/10.1146/annurev-statistics-060116-053930
http://arxiv.org/abs/https://doi.org/10.1146/annurev-statistics-060116-053930
https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data/
https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data/
https://doi.org/10.1145/2676723.2677218
https://doi.org/10.1145/971300.971424
https://doi.org/10.1145/971300.971424
https://doi.org/10.1145/2445196.2445222
https://doi.org/10.1145/2445196.2445222
https://www.jstatsoft.org/v040/i01
https://www.jstatsoft.org/v040/i01
https://doi.org/10.18637/jss.v059.i10

	Abstract
	1 Introduction
	2 Course Content
	2.1 Data Models
	2.2 Data Sources
	2.3 Classroom Approach

	3 Inaugural Year Student Audience
	4 Evaluation and Student Feedback
	5 Conclusions
	References



