
Preface

The sources and forms of data, along with the demand for acquiring, processing, and
analyzing that data are increasing at a prodigious rate. From a curricular perspective,
majors, programs, and courses are being designed to enable interested students to
understand these topics and prepare themselves for the practice of these associated
data skills. As the sources and forms of data increase, with a commensurate increase
in the data providers and interfaces for accessing data, our interpretation of what
constitutes a data system must keep pace. An understanding of these forms and
sources of data is exactly what is needed in a broad introduction to data systems.

Data systems encompasses the study of forms and sources of data, an increas-
ingly important topic for both computer scientists and data scientists. This book
covers data acquisition, wrangling, normalization, and curation, requiring only basic
prior exposure to Python. The book includes a detailed treatment of tidy data,
relational data, and hierarchical data, laying a conceptual basis for the structure,
operations, and constraints of each data model, while simultaneously providing
hands-on skills in Python, SQL, and XPath. The sources of data studied encompass
local files, text applications and regular expressions, database servers, HTTP
requests, REST APIs, and web scraping.

Who Is This Book for?

As university curricula expand to include content on data systems, the student
audience for such curricular efforts is broadening as well. We identify three student
constituencies at the undergraduate level:

• Computer Science: students recognizing the value of being facile while working
with data and seeing the synergy with the systems and algorithmic problem-
solving aspects of the computer science discipline.

vii



viii Preface

• Data Science/Data Analytics: students pursuing the emerging undergraduate
majors, who desire to build algorithmic and practical skills with an eye toward
enabling data exploration, visualization, statistical analysis, and application of
machine learning techniques for use in coursework as well as in practicums and
internships.

• Multidisciplinary/domain-centric: students whose focus is on practical aspects of
acquiring and transforming data for use in their own disciplines. These include
students in social sciences as well as natural sciences, and often as a prelude to a
“methods” course specific to their discipline.

Within computer science education, the union of these audiences has been termed
the “data-centric” audience. We have carefully identified a set of essential data-
related topics, and a desired level of understanding, that these student constituencies
will need to be successful in their future endeavors.

This book is ideal for first- or second-year undergraduate students, either for a
classroom setting or for self-directed learning, and does not require prerequisites
of data structures, algorithms, or other courses beyond a first course in Python
programming. This book equips students with understanding and skills that can
be applied in computer science, data science/data analytics, and information
technology programs as well as for internships and research experiences. By
drawing together content normally spread across a set of upper-level computer
science courses, it offers a single source providing the essentials for data science
practitioners, an accessible and foundational second course for computer science
majors, a potential second course for data science majors, and content that can
supplement introductory courses seeking more exposure to real-world data. In our
increasingly data-centric world, students from all domains both want and need the
data-aptitude built by the material in this book.

Philosophy of This Book

We see two primary dimensions to data-aptitude, corresponding to the sources and
forms of data. Data sources range from local files, downloaded or given to the
student or analyst, to a relational database system, to a wide assortment of network-
based data providers. Data forms/formats include comma-separated value or other
delimited flat files, tables within a relational database, XML and JSON used for
data interchange, as well as unstructured data and HTML from which data can be
extracted. Data models give a framework for understanding the structure, operations,
and constraints for these various forms of data. A third dimension of data-aptitude
relates to the protection and privacy of the data. Some data is explicitly open and
freely available. Other data may be limited to use by particular applications. Still
other data may be comprised of protected resources of one or more resource owners,
and the acquisition and use of such data must be appropriately authorized.



Preface ix

An Introduction to Data Systems, as advanced by this book, takes the perspective
that students can, early in their academic careers, learn these dimensions of data-
aptitude. Students need, in a structured way, to learn about the forms and sources
of data in modern data systems, defined broadly. As users of data systems, students
need to be able to build applications to acquire data and, given the form of the data
acquired, be able to extract and transform the data into a normalized form, where
subsequent statistics and analysis may be easily performed on the data.

This book uses the framework of a set of data models, from a simple tabular
model with appropriate constraints, to the relational data model, and to a hierarchical
data model, giving structure to the various data forms seen in practice. In the
data sources dimension of data-aptitude, the course follows a progression of data
sources, starting the students with local files, moving on to MySQL database server
and SQLite databases as representative of relational databases, and then covering
more advanced client–server interaction over HTTP using provider APIs, and also
extracting data from HTML. In this way, we feel we can cover the topics of data-
aptitude in sufficient depth, while keeping material broad and applicable to the wide
range of data-centric students.

Since specific programming languages and packages are bound to change over
the course of the reader’s lifetime, we stress a conceptual understanding over
an exhaustive coverage of packages. For each topic, we begin with a high-level
discussion, situating the topic within its disciplinary context. We then discuss how
to work with the topic, with an emphasis on problem solving and algorithms. Lastly,
we illustrate using tools such as Python, pandas, SQL, XPath, curl, etc. In this
way, we ensure that readers understand the principles underlying these tools, rather
than only how to use them as a black box. We select tools that are powerful enough
to illustrate the concepts, and simultaneously as easy as possible for readers to learn.
Readers are free to focus their energy on the essential content, rather than struggling
to learn the tools. We include detailed references that can guide interested readers
to further exploration.

To avoid overwhelming readers with too many different data situations, we center
our exposition on three data sets—based on economic data, sociological data, and
educational data—that we carry with us throughout the book. These illustrate our
foundational material, the three data models, and the process of data acquisition.
This allows us to center our discussion on compelling real-world problems, rather
than on the tools used to solve these problems. This approach has been shown
to be effective for a diverse array of student learners, and to increase retention
in the discipline. When we develop data wrangling solutions on these data sets,
we illustrate good software engineering principles, guiding the reader through
the process of developing incrementally, testing their code as they go, and error
handling. We include a large number of exercises where students can sharpen their
skills.



x Preface

Web Resources

Accompanying this book is a website supported by the authors, containing files and
supplementary content that will aid the reader:

http://datasystems.denison.edu.

This website hosts data files used in Parts I and II of the book and is used to
illustrate HTTP, HTML, and web scraping in Part III. In addition, the authors have
taught many iterations of a course using this book and have curated a repository of
hundreds of exercises, reading questions, and hands-on activities engaging students
in the material. These resources are contained within Jupyter notebooks that use
the freely available nbgrader system, so that worksheets may be automatically
graded. The repository also contains multiple in-depth projects guiding students
to work with real-world data sets, normalize the data into the relevant data model,
generate interesting questions, and answer these questions with visualizations. Via
these projects, students can create a portfolio to showcase what they have learned to
potential future employers and graduate programs. We host several sample projects
on the book website, and we intend to add more as we continue to teach courses
using this book. In this way, projects can be updated if real-world data sources
change where they host data, what data they make available, or the form in which
the data is provided.

To Students

This text was written with both concrete and abstract goals in mind. A large part
of our motivation was to serve “data-focused” students and provide a bridge for
you to take the learning from the classroom and use these skills in concrete,
real-world settings. The focus of the book is giving you the skills you need to
acquire data from a multitude of sources, mutate it into a form suitable for analysis,
and access it programmatically to answer interesting questions. This includes data
stored in files, on database servers, provided by Application Programming Interfaces
(APIs), and data obtained via web scraping. The projects (hosted on the book web
page) will guide you to applying your new skills in the real world: after learning
about data models, you will be able to use that knowledge to work with real-
world data sets, normalize the data into the model, and then generate interesting
questions and visualizations to help answer those questions. Similarly, after learning
about obtaining data over the Internet, REST APIs, and authorization for protected
resources, the API projects allow you to bring it all together, and acquire data from
providers such as LinkedIn, Reddit, various Google APIs, Lyft, and many others.
This will entail using the material from the entire arc of the book.

We surveyed students to see how the material in this book benefited them after
the course was over. The vast majority of respondents reported using material from

http://datasystems.denison.edu


Preface xi

some or all of the chapters of this book in their subsequent jobs, internships, and
research projects. Furthermore, if done correctly, the projects you complete can
become part of a portfolio that you show to potential employers, which, coupled
with your knowledge of the terms and concepts covered in this book, can help you
secure the kind of data-focused job you are interested in.

Equally important to these concrete learning goals are our abstract goals: to
sharpen your analytic thinking, problem solving, coding, writing, and technical
reading skills. For each technique in this book, we first describe the approach in
general terms, then carefully work through multiple examples, and finally provide
numerous exercises (building on the examples) for you to achieve mastery. In our
examples, we model an incremental approach, where we develop a partial solution,
test it, and then develop a bit more, repeating this process until we have a general
solution. We encourage you to follow the same steps when you solve exercises,
including the use of try/except blocks and assert statements to ensure that your code
behaves as expected.

This book is written to only assume you have prior exposure to computer science
principles (and Python) at the level of an introductory course. Normally, the material
in this book is spread across several electives that only junior and senior computer
science majors take. By condensing the material, and taking an elementary approach
to it, we aim to give you the concrete and abstract skills early in your college career.
However, the trade-off is that this book contains a great deal that will probably be
new to you. We do not expect that you will be an expert at reading computer science
books. Some parts may be difficult to understand or may require you to read multiple
times. As with anything you read, if you come across a term that is new to you, we
encourage you to look that term up and understand it before proceeding. It may be
that the term was defined earlier in the book, in which case the index at the end of
the book can tell you where the term was first defined.

Most sections begin with an abstract approach and introduce examples later. It
may make sense to peek ahead at the examples if you struggle with the abstract part,
or to reread it after finishing the chapter to better structure what you have learned. To
help you identify the most important parts of each section, and to guide you through
the types of activities that will help you to understand the material (e.g., relating the
abstract concepts to experiences you may have already had in the real world), we
include reading questions at the end of each section. These may be assigned by your
instructor, to make sure you attempt the reading before class. Even if they are not
assigned, we recommend working through the questions as you read each section,
as they will often clarify the meaning of new terms introduced, highlight potential
pitfalls, and emphasize which pieces of the reading are most essential. You can and
should use Python when answering reading questions that reference code, modules,
and methods.

Data systems is a rapidly evolving field, and this book is the first of its kind.
Previously, students who wanted to learn this material would need to do so by
reading online tutorials that often treated data science tools as a black box. By
emphasizing the concepts and programming underlying the tools, we aim to give
you a deeper level of understanding. This understanding, coupled with the technical



xii Preface

reading skills you will develop, will aid you if, in future years, you find yourself
needing to read tutorials and manuals in order to learn new technologies that did
not exist when you were a student. For this reason, reading questions sometimes
guide you to online self-learning materials to get you comfortable with this kind of
exploration. This approach is especially apparent in Part III, where we learn how
to acquire data from web scraping and APIs, which, necessarily, differ between
different data providers. Our approach teaches you the general steps that will guide
you to learn the particulars of APIs and HTML web pages, so that you can develop
software to obtain data from a diverse array of sources.

As you read the text, in addition to trying to answer the reading questions, it
is essential to familiarize yourself with the blocks of code provided. You should
expect to practice with the code every day, as you would if you were learning a new
language or musical instrument. Fundamental to the process of learning is to make
connections between the new material you are seeing and your past life experience.
We encourage you to be curious and playful as you explore the content: try plugging
in different values for the parameters of functions, adding print statements to see
how a block of code computes, and coming up with questions beyond the examples
in the book.

To Instructors

This book is designed with minimal prerequisites, requiring only that students have
prior exposure to Python programming at the level of a first course in computer
science. This makes it suitable for any of the three student constituencies identified
above, or as a supplementary textbook to go along with an introductory computer
science course and add a more data-driven focus. As discussed above, we emphasize
conceptual understanding, an abstract framework, concrete examples based on real-
world data, and good software engineering principles. This emphasis gives readers
a deeper understanding than would be obtained from a “pick it up as you go”
approach, or an approach rooted in technical manuals. The structure provided in
this book empowers readers to learn new technologies throughout their lives, as part
of a unifying framework.

Broadly speaking, the book breaks down into six units, which we summarize in
Table 1.

There is a rich set of possible orderings for covering the material in the book for
a given course, and we have successfully used several different orderings. The book
chapters themselves progress by covering all the data models prior to the treatment
of the data sources. But, a course that wanted to interleave the two parts could do so,
with arguable benefit for student engagement. For instance, after learning the tabular
model, the course could cover networking and HTTP to access data sets from web
servers and immediately apply the data model in client software. Similarly, after
coverage of the hierarchical model, the course could access XML from web servers
or non-authenticated APIs to again apply the data model.



Preface xiii

Table 1 Textbook contents

Unit Name Description

00 Foundations After an overview of data systems, we begin building a
foundation in Python to be used in the remainder of the book.
We review introductory basic topics typically found in intro
courses. We then progress to useful and possibly new topics
like list comprehensions, lambda functions, and regular
expressions

01 Tabular data model The focus is on single, rectangular table data sets. We work
from native Python structures to pandas data frames. We
conclude with the constraints required for rectangular data to
be considered “tidy data”

02 Relational data
model

This unit explores the data model associated with relational
databases and the operations and organization involved in
sound design of the set of tables for a database. We develop
skills in querying existing databases and creating databases
using the Structured Query Language (SQL) through both
direct commands and Python programming with
sqlalchemy

03 Hierarchical data
model

The focus shifts to hierarchical data, such as that found in
XML and JSON. We explore both declarative XPath and
programmatic means to process the data and wrangle it into
data frames. We also cover schemas for constraining data in
the model, such as XML Schema and JSON Schema

04 Networking,
HTTP, HTML

In this unit, our goals are to understand and program client
applications over the network. We start with foundational
networking concepts and the network protocol stack and
progress to learning HTTP and making requests for static
data in files or as HyperText Markup Language (HTML)

05 APIs The book culminates with acquisition of data from API
providers. This unit is a synthesis of the full set of data
models and provider sources. This unit covers APIs and
associated authentication (including OAuth) and illustrates
the framework with real-world providers

We often begin with Chaps. 1–3, because this material is foundational and can
identify any gaps in student background. Chapter 4 can be substantially delayed
if one wishes to get more quickly to data models. While the tabular data model
and relational data model can be taught in either order, we generally teach the
tabular model first, as it only depends on local files instead of forming connections
to database servers. Our study of hierarchical operations depends on Chap. 6,
because the examples wrangle hierarchical data into tabular form, but otherwise
our treatment of hierarchical models is logically independent from our treatment of
the other two data models.

We note that the relational model can be taught as a stand-alone sequence
consisting of Chaps. 10–14, which may be valuable to give students the basics
of databases and SQL in a three-week module or attached to another course.
One could similarly teach Chaps. 2, 6, 15, 16, and 17 as a stand-alone sequence



xiv Preface

Fig. 1 Chapter dependencies

on hierarchical data or could teach Chaps. 18–20 as a stand-alone sequence on
the basics of networking. If a reader is primarily interested in web scraping and
APIs, the tabular and relational model could be skipped entirely (except for the
introduction of pandas in Chap. 6), and the minimal set of chapters to cover in
this situation would be Chaps. 1–6, 15–16, and 20–22 (or 20, 23, and 24 for APIs).

Figure 1 shows the dependency structure between the chapters. We have color
coded the chapters to help visualize the units described above. Dotted arrows repre-
sent suggested, but optional, orderings. The dotted lines from regular expressions to
hierarchical operations and to relational programming support some more advanced
exercises in those downstream chapters.

For many topics, we employ a spiral approach: returning to the topic in
increasingly complex ways as the book progresses. For example, regular expressions
are introduced in Chap. 4, then reinforced in Chaps. 13 and 16, and then can be
used heavily in Chap. 22. Similarly, the JSON format is introduced in Chap. 2,
then reinforced in Chap. 13, and then used heavily in Chaps. 15, 16, and 22–23.
We also introduce non-local (over the network) data sources gradually. Concepts
of protocol, connection, and user identity (authentication and authorization) are
introduced concurrently with the relational data model by using databases provided
by a database server. The next source of data, web servers, allows us to expand the
basics of networking, the network protocol stack, and then the fundamentals of the



Preface xv

HyperText Transfer Protocol (HTTP). Understanding the aspects of this protocol
allows the facility for constructing and issuing requests and being able to retrieve
and understand the constituent parts of the response. This type of data source can
provide delimited flat files, HTML files, or even XML/JSON files. We combine this
data source with the knowledge from the hierarchical data model to understand web
scraping as an application of previously introduced ideas.

Software Assumptions

To run the code in this book, you will need to have Python 3.4 (or later)
on your machine, as well as a number of packages and libraries, includ-
ing pandas, os, sys, io, json, re, sqlalchemy, sqlite3,
lxml, jsonschema, requests, base64 and a custom module discussed
in the Appendix and hosted on the book website. At the time of writing, this version
of Python, along with all of these packages and libraries, was included with a
standard installation of the freely available Anaconda distribution from Continuum
Analytics.

https://store.continuum.io/cshop/anaconda

Online Corrigenda

This book was written in bookdown, using facilities of Python and SQL code as
part of the textbook composition. In this facility, every example piece of Python
and SQL is executed as part of the rendering process, ensuring that there are no
errors in the code presented to the reader. Furthermore, for examples that reference
Internet data sources (e.g., in the web scraping and API chapters), we attempted
to select sources that seemed most likely to remain stable in the years to come.
Nevertheless, we are aware of the possibility that the reader may discover typos, or
that code referencing online data sources may cease to work properly. As errors are
identified, they will be corrected at

https://www.datasystems.denison.edu/errata.
If you find an error not documented at the link above, please report it using the

link below:
https://www.datasystems.denison.edu/feedback.

Acknowledgments

The authors are grateful to the Denison University for hosting the web resources
associated with this book and providing a wonderful working environment where it
was written.We also thank Dick De Veaux for facilitating the Park CityMathematics

https://store.continuum.io/cshop/anaconda
https://www.datasystems.denison.edu/errata
https://www.datasystems.denison.edu/feedback


xvi Preface

Institute Undergraduate Faculty Program in 2016 where this book began, and
Deborah Nolan and Duncan Temple-Lang for sharing an early draft of their book
Data Technologies and Computational Reasoning. We are indebted too, to the
students at Denison. We especially thank Gavin Thomas and Paul Rubenstein for
their pedagogical research work related to this book (which produced a paper
published in SIGCSE in 2019). Students from the Denison CS-181 and DA-
210 courses have given feedback and helped tremendously. Emma Steinman was
particularly helpful and dedicated in giving feedback, and Caileigh Marshall in
helping with materials on SQL and OAuth2. In the Spring of 2020, a number of
additional students gave significant thought and feedback, and so we sincerely thank
Paul Bass, Thomas Luong, Ben Rahal, Jill Reiner, Dan Seely, Jay Dickson, Matthew
Bartlett, Brandon Novak, and Dang Pham.

Granville, OH, USA Tom Bressoud
Granville, OH, USA David White
June 2020


	Preface
	Who Is This Book for?
	Philosophy of This Book
	Web Resources
	To Students
	To Instructors
	Software Assumptions
	Online Corrigenda
	Acknowledgments

	Contents
	Part I Foundation
	1 Introduction
	1.1 A Broad View of Data Systems
	1.1.1 Reading Questions

	1.2 The Sources of Data
	1.2.1 Reading Questions

	1.3 The Forms of Data
	1.3.1 Reading Questions

	1.4 Book Organization
	1.4.1 Exercises


	2 File Systems and File Processing
	2.1 File Systems
	2.1.1 Hierarchical Organization
	2.1.2 Paths
	2.1.3 Python File System and Path Facilities
	2.1.4 Reading Questions
	2.1.5 Exercises

	2.2 File Level Operations
	2.2.1 File Open and Close
	2.2.2 Text File Encoding
	2.2.3 Reading Questions
	2.2.4 Exercises

	2.3 Processing Files for Data
	2.3.1 Single Data Item per Line
	2.3.2 Multiple Data Items per Line
	2.3.3 Reading Questions
	2.3.4 Exercises

	2.4 JSON File Processing
	2.4.1 Writing Data Structures to JSON
	2.4.2 Reading Data Structures from JSON
	2.4.3 Reading Questions
	2.4.4 Exercises


	3 Python Native Data Structures
	3.1 List Patterns
	3.1.1 Accumulation
	3.1.2 Unary Vector Operations
	3.1.3 Binary Vector Operations
	3.1.4 Filter
	3.1.5 Reduction
	3.1.6 Reading Questions
	3.1.7 Exercises
	3.1.7.1 Accumulation
	3.1.7.2 Unary Vector Operations
	3.1.7.3 Binary Vector Operations
	3.1.7.4 Filtering


	3.2 Dictionaries
	3.2.1 Reading Questions
	3.2.2 Exercises

	3.3 Python Features
	3.3.1 Functions as Objects
	3.3.2 Lambda Functions
	3.3.3 List Comprehensions
	3.3.4 Reading Questions
	3.3.5 Exercises
	3.3.5.1 Functions as Objects
	3.3.5.2 Mapping Functions
	3.3.5.3 Lambda Functions
	3.3.5.4 List Comprehensions


	3.4 Representing General Data Sets
	3.4.1 Dictionary of Lists
	3.4.2 List of Lists
	3.4.3 List of Dictionaries
	3.4.4 Reading Questions
	3.4.5 Exercises


	4 Regular Expressions
	4.1 Motivation
	4.1.1 Reading Questions

	4.2 Terminology
	4.2.1 Reading Questions

	4.3 The Regular Expression Language
	4.3.1 Literal Characters
	4.3.2 Single Character Wildcard Matching
	4.3.2.1 Dot
	4.3.2.2 Predefined Single Character Sets
	4.3.2.3 User-Defined Single Character Sets

	4.3.3 Repetition
	4.3.4 Disjunction
	4.3.5 Boundaries/Anchors
	4.3.6 Grouping
	4.3.7 Flags
	4.3.7.1 Case Insensitive
	4.3.7.2 Multi-line
	4.3.7.3 Single Line

	4.3.8 Reading Questions
	4.3.9 Exercises

	4.4 Python Programming with Regular Expressions
	4.4.1 Specifying Patterns
	4.4.2 The re Module Interface
	4.4.3 Reading Questions
	4.4.4 Exercises



	Part II Data Systems: The Data Models
	5 Data Systems Models
	5.1 Data Model Framework
	5.1.1 Structure
	5.1.2 Operations
	5.1.3 Constraints
	5.1.4 Reading Questions

	5.2 Tabular Model Overview
	5.2.1 Structure
	5.2.2 Operations
	5.2.3 Constraints
	5.2.4 Reading Questions

	5.3 Relational Model Overview
	5.3.1 Structure
	5.3.2 Operations
	5.3.3 Constraints
	5.3.4 Reading Questions

	5.4 Hierarchical Model Overview
	5.4.1 Structure
	5.4.2 Operations
	5.4.3 Constraints
	5.4.4 Reading Questions


	6 Tabular Model: Structure and Formats
	6.1 Tidy Data
	6.1.1 Reading Questions
	6.1.2 Exercises

	6.2 Tabular Data Format
	6.2.1 Format Background
	6.2.2 Format for Tabular Data
	6.2.2.1 Tabular Format Design

	6.2.3 Tabular Format File Processing
	6.2.3.1 CSV Parsing [Optional]

	6.2.4 Reading Questions
	6.2.5 Exercises

	6.3 Tabular Structure as pandas DataFrame
	6.3.1 DataFrame Creation
	6.3.2 Operations Involving Whole Data Frames
	6.3.3 Reading Questions
	6.3.4 Exercises


	7 Tabular Model: Access Operations and Pandas
	7.1 Tabular Operations Overview
	7.1.1 Access Operations
	7.1.2 Computational Operations
	7.1.3 Mutation Operations
	7.1.4 Advanced Operations
	7.1.5 Reading Questions

	7.2 Preliminaries and Example Data Sets
	7.2.1 Reading Questions

	7.3 Access and Computation Operations
	7.3.1 Single Column Projection and Vector Operations
	7.3.2 Multi-Column Projection of a DataFrame
	7.3.3 Row Selection by Slice
	7.3.3.1 Position Slicing for Selecting Rows
	7.3.3.2 Index Slicing for Selecting Rows

	7.3.4 Row Selection by Condition
	7.3.5 Combinations of Projection and Selection
	7.3.5.1 Access a Single Element
	7.3.5.2 Querying a Single Column or Single Row
	7.3.5.3 Querying a Subset of a Single Column or Single Row
	7.3.5.4 Generalized Projection and Selection

	7.3.6 Iteration over Rows and Columns
	7.3.7 Reading Questions
	7.3.8 Exercises


	8 Tabular Model: Advanced Operations and Pandas
	8.1 Aggregating and Grouping Data
	8.1.1 Aggregating Single Series
	8.1.2 Aggregating a Data Frame
	8.1.3 Aggregating Selected Rows
	8.1.4 General Partitioning and GroupBy
	8.1.5 Indicators Grouping Example
	8.1.6 Reading Questions
	8.1.7 Exercises

	8.2 Mutation Operations for a Data Frame
	8.2.1 Operations to Delete Columns and Rows
	8.2.1.1 Single Column Deletion
	8.2.1.2 Multiple Column Deletion
	8.2.1.3 Row Deletion

	8.2.2 Operation to Add a Column
	8.2.3 Updating Columns
	8.2.3.1 Update Entire Column
	8.2.3.2 Selective Column Assignment

	8.2.4 Reading Questions
	8.2.5 Exercises

	8.3 Combining Tables
	8.3.1 Concatenating Data Frames Along the Row Dimension
	8.3.1.1 Meaningful Row Index
	8.3.1.2 Meaningful Index with Levels
	8.3.1.3 No Meaningful Index

	8.3.2 Concatenating Data Frames Along the Column Dimension
	8.3.2.1 Single Level Row Index and New Columns
	8.3.2.2 Introducing a Column Level

	8.3.3 Joining/Merging Data Frames
	8.3.3.1 Using Index Level
	8.3.3.2 Using Specific Columns

	8.3.4 Reading Questions
	8.3.5 Exercises

	8.4 Missing Data Handling
	8.4.1 Reading Questions


	9 Tabular Model: Transformations and Constraints
	9.1 Tabular Model Constraints
	9.1.1 Reading Questions
	9.1.2 Exercises

	9.2 Tabular Transformations
	9.2.1 Transpose
	9.2.2 Melt
	9.2.2.1 [Optional] Stack Examples

	9.2.3 Pivot
	9.2.3.1 Pivot Table

	9.2.4 Reading Questions
	9.2.5 Exercises

	9.3 Normalization: A Series of Vignettes
	9.3.1 Column Values as Mashup
	9.3.1.1 Example: Code and Country Mashup
	9.3.1.2 Example: Year and Month Mashup

	9.3.2 One Relational Mapping per Row
	9.3.2.1 Example: One Value Column and One Index Column
	9.3.2.2 Example: One Value Column and Two Index Columns

	9.3.3 Columns as Values and Mashups
	9.3.3.1 Example: Single Variable with Multiple Years
	9.3.3.2 Example: Multiple Variables with Multiple Years

	9.3.4 Exactly One Table per Logical Mapping
	9.3.4.1 Example: Variable Values as Two Tables
	9.3.4.2 Example: Separate Logical Mappings in a Single Table

	9.3.5 Reading Questions

	9.4 Recognizing Messy Data
	9.4.1 Focus on Each Column as Exactly One Variable (TidyData1)
	9.4.2 Focus on Each Row Giving Exactly One Mapping (TidyData2)
	9.4.3 Focus on Each Table Representing One Data Set (TidyData3)
	9.4.4 Reading Questions
	9.4.5 Exercises


	10 Relational Model: Structure and Architecture
	10.1 Background
	10.1.1 Motivation and Requirements
	10.1.2 The Relational Database Solution
	10.1.3 Types of Relational Databases
	10.1.4 Reading Questions

	10.2 Structure
	10.2.1 Single Table Characteristics
	10.2.1.1 Functional Dependencies
	10.2.1.2 Table Keys
	10.2.1.3 Illustrative Example

	10.2.2 Multiple Table Characteristics
	10.2.3 Reading Questions

	10.3 Database Architecture
	10.3.1 Reading Questions


	11 Relational Model: Single Table Operations
	11.1 Example Data Sets
	11.1.1 Reading Questions

	11.2 Projecting Column Fields
	11.2.1 Single Column Field Projection
	11.2.2 Multiple Column Field Projection
	11.2.3 Simple Subquery
	11.2.4 Ordering Results
	11.2.5 Reading Questions
	11.2.6 Exercises

	11.3 Selecting and Filtering Rows
	11.3.1 Uniqueness Filtering
	11.3.2 Row Selection by Filtering
	11.3.3 Missing Values
	11.3.4 Additional Examples
	11.3.5 Reading Questions
	11.3.6 Exercises

	11.4 Column-Vector Operations
	11.4.1 Reading Questions
	11.4.2 Exercises

	11.5 Aggregation
	11.5.1 Counting Rows for Fields
	11.5.2 Reading Questions
	11.5.3 Exercises

	11.6 Partitioning and Aggregating
	11.6.1 Reading Questions
	11.6.2 Exercises


	12 Relational Model: Multiple Tables Operations
	12.1 Preliminaries and Example Data Set
	12.1.1 Data Set: The school Database Schema
	12.1.2 Table Relationships
	12.1.3 SQL Execution Plan
	12.1.4 Reading Questions
	12.1.5 Exercises

	12.2 Overview of Join Operations
	12.3 Inner Joins
	12.3.1 Two Table SQL Inner Join
	12.3.2 [Optional] Cartesian Product-Based Inner Join
	12.3.3 Inner Join to Fill Redundant Fields
	12.3.4 Three-Table Join
	12.3.5 Join Table from a Subquery
	12.3.6 Reading Questions
	12.3.7 Exercises

	12.4 Outer Joins
	12.4.1 Left and Right Joins
	12.4.2 Full Outer Join
	12.4.3 Reading Questions
	12.4.4 Exercises

	12.5 Partitioning and Grouping Information
	12.5.1 Reading Questions
	12.5.2 Exercises

	12.6 Subqueries
	12.6.1 Reading Questions
	12.6.2 Exercises


	13 Relational Model: Database Programming
	13.1 Making Connections
	13.1.1 The Connection String
	13.1.2 Connecting and Closing
	13.1.3 Reading Questions
	13.1.4 Exercises

	13.2 Executing Queries and Basic Retrieval of Results
	13.2.1 Basic Query and Fetching Results
	13.2.1.1 Result Data
	13.2.1.2 Native Data Structure to pandas
	13.2.1.3 Database Requests Directly through pandas

	13.2.2 Reading Questions
	13.2.3 Exercises

	13.3 More Advanced Techniques
	13.3.1 Record at a Time
	13.3.1.1 Result Proxy as an Iterator
	13.3.1.2 Fetch One

	13.3.2 Chunks
	13.3.2.1 Fetch Many
	13.3.2.2 Using Pandas with Chunk Size

	13.3.3 Working with Multiple Databases
	13.3.4 Reading Questions
	13.3.5 Exercises

	13.4 Incorporating Variables
	13.4.1 Python String Composition
	13.4.2 Binding Variables
	13.4.2.1 Prepare
	13.4.2.2 Bind
	13.4.2.3 Execute

	13.4.3 Reading Questions
	13.4.4 Exercises


	14 Relational Model: Design, Constraints, and Creation
	14.1 Motivation and Process
	14.2 Designing Tables
	14.2.1 Functional Dependencies
	14.2.2 Table Design: Advice and Best Practices
	14.2.3 Table Primary Key
	14.2.4 Reading Questions
	14.2.5 Exercises

	14.3 Table Fields
	14.3.1 Single Field Issues
	14.3.2 Field Relationship Issues
	14.3.2.1 List of Values in a Single Field
	14.3.2.2 Using Multiple Fields Instead of List of Values

	14.3.3 Field Data Types
	14.3.4 Field Design: Advice and Best Practices
	14.3.5 Reading Questions
	14.3.6 Exercises

	14.4 Relationships Between Tables
	14.4.1 Designing for Many-to-One Relationships
	14.4.2 Designing for Many-to-Many Relationships
	14.4.3 Reading Questions
	14.4.4 Exercises

	14.5 Table and Schema Creation
	14.5.1 Fields
	14.5.2 Table Constraints
	14.5.2.1 Primary Key
	14.5.2.2 Foreign Key
	14.5.2.3 CHECK Constraint

	14.5.3 Programming and Development Advice
	14.5.4 Reading Questions
	14.5.5 Exercises

	14.6 Table Population
	14.6.1 Examples
	14.6.2 Programming for Table Population
	14.6.2.1 Example 1: Table Population from Python List of Row Lists
	14.6.2.2 Example 2: Table Population using Python CSV DictReader
	14.6.2.3 Example 3: Table Population from a pandas DataFrame
	14.6.2.4 Example 4: Table Population Using pandas Method

	14.6.3 Reading Questions
	14.6.4 Exercises


	15 Hierarchical Model: Structure and Formats
	15.1 Motivation
	15.2 Representation of Trees
	15.2.1 Terminology
	15.2.2 Python Native Data Structures and Nesting
	15.2.2.1 Representing Graphs
	15.2.2.2 Representing Trees

	15.2.3 Traversals and Paths
	15.2.4 Reading Questions

	15.3 JSON
	15.3.1 Reading Questions
	15.3.2 Exercises

	15.4 XML
	15.4.1 XML Structure
	15.4.2 Extracting Data from an XML File
	15.4.3 Reading Questions
	15.4.4 Exercises

	Further Exploration

	16 Hierarchical Model: Operations and Programming
	16.1 Operations Overview
	16.1.1 Reading Questions

	16.2 JSON Procedural Programming
	16.2.1 Access and Traversal Operations Example
	16.2.1.1 Example: Simple Table in JSON
	Example: Simple Table in JSON
	16.2.1.2 Single Table from JSON with Additional Level
	Single Table from JSON with Additional Level

	16.2.2 Node Creation
	16.2.3 Node Attribute Updates
	16.2.4 Reading Questions
	16.2.5 Exercises

	16.3 XML Procedural Operations
	16.3.1 Reading and Traversing XML Data
	16.3.1.1 Indicators Example
	16.3.1.2 School Example
	16.3.1.3 Wrangling Instructors
	16.3.1.4 Wrangling Departments
	16.3.1.5 Wrangling Courses

	16.3.2 Creating XML Data
	16.3.3 Further Operations
	16.3.4 Reading Questions
	16.3.5 Exercises

	16.4 XPath
	16.4.1 Paths in XML Documents
	16.4.2 Paths and Expressions in XPath
	16.4.3 XPath Syntax
	16.4.4 XPath Axes
	16.4.5 XPath Predicates and Built-in Functions
	16.4.6 Python Programming with XPath
	16.4.7 Case Study Example
	16.4.8 Reading Questions
	16.4.9 Exercises

	Further Reading

	17 Hierarchical Model: Constraints
	17.1 Motivation
	17.1.1 Reading Questions

	17.2 Well-Formed XML
	17.2.1 Reading Questions

	17.3 Document Type Definition
	17.3.1 Declaring Elements
	17.3.2 Declaring Attributes and Entities
	17.3.3 Example DTD Declarations
	17.3.4 DTD Validation of an XML Document
	17.3.5 Exercises

	17.4 XML Schema
	17.4.1 Root of an XML Schema
	17.4.2 Declaring Elements and Attributes
	17.4.3 XSD Types
	17.4.4 XSD Restrictions
	17.4.5 An XSD Example
	17.4.6 Validating an XML Document
	17.4.7 Exercises

	17.5 JSON Schema
	17.5.1 Basics of JSON Schema
	17.5.2 Validating a JSON Document Using a JSON Schema
	17.5.3 Exercises



	Part III Data Systems: The Data Sources
	18 Overview of Data Systems Sources
	18.1 Architecture
	18.2 Data Sources
	18.2.1 Local Files
	18.2.2 Database Systems
	18.2.3 Web Servers
	18.2.4 API Service
	18.2.5 Reading Questions


	19 Networking and Client–Server
	19.1 The Network Architecture
	19.1.1 Host Addressing
	19.1.2 Packet Switching and Routing
	19.1.3 Summary Characteristics of the Network
	19.1.4 Reading Questions

	19.2 The Network Protocol Stack
	19.2.1 Media Access Protocol Layer
	19.2.2 Network Protocol Layer
	19.2.3 Transport Protocol Layer
	19.2.4 The Socket Interface
	19.2.5 Application Protocols
	19.2.6 Reading Questions

	19.3 Client–Server Model
	19.3.1 Server Application
	19.3.2 Client Application
	19.3.3 Reading Questions


	20 The HyperText Transfer Protocol
	20.1 Identifying Resources with URLs and URIs
	20.1.1 Host Locations
	Host Locations

	20.1.2 Resource Paths
	Resource Paths

	20.1.3 URL Syntax
	20.1.4 Reading Questions

	20.2 HTTP Definition
	20.2.1 Message Format
	20.2.2 Request Messages
	20.2.3 Connections and Message Exchange
	20.2.3.1 Client-Side HTTP Steps
	Client-Side HTTP Steps

	20.2.4 Socket Level Programming Examples
	20.2.4.1 Example of Socket-Based GET Request
	Example Socket-Based GET Request
	20.2.4.2 Example of Socket-Based POST Request
	Example Socket-Based POST Request

	20.2.5 Request Header Lines
	20.2.6 Response Messages
	20.2.7 Redirection
	20.2.8 Reading Questions
	20.2.9 Exercises

	20.3 Programming HTTP Using Requests
	20.3.1 GET Requests
	20.3.1.1 Example 1: GET of HTML
	Example 1: GET of HTML
	20.3.1.2 Example 2: GET Specifying Headers for Request
	Example 2: GET Specifying Headers for Request
	20.3.1.3 Example 3: GET with Query Parameters
	Example 3: GET with Query Parameters

	20.3.2 POST Requests
	20.3.2.1 Example 1: POST with Form Data Body
	Example 1: POST with Form Data Body
	20.3.2.2 Example 2: POST with JSON Body

	20.3.3 Response Attributes
	20.3.4 Reading Questions
	20.3.5 Exercises

	20.4 Command Line HTTP with curl
	20.4.1 Basics
	20.4.1.1 Options Controlling Output
	20.4.1.2 Options to Show Response Metadata

	20.4.2 Sending Custom Request Header Lines
	20.4.3 Query Parameters
	20.4.4 POST Requests
	20.4.4.1 POST with No Body
	POST with no Body
	20.4.4.2 POST with Form Data
	POST with Form Data
	20.4.4.3 POST with JSON Data
	POST with JSON Data

	20.4.5 Exploring Further
	20.4.6 Exercises


	21 Interlude: Client Data Acquisition
	21.1 Encoding and Decoding
	21.1.1 Python Strings and Bytes
	21.1.1.1 The Encode Operation: A String to Bytes
	The Encode Operation: a String to Bytes
	21.1.1.2 The Decode Operation: Bytes to a String
	The Decode Operation: Bytes to a String

	21.1.2 Prelude to Format Examples
	21.1.3 Reading Questions
	21.1.4 Exercises

	21.2 CSV Data
	21.2.1 CSV from File Data
	21.2.2 CSV from Network Data
	21.2.2.1 Option 1: From String Text
	Option 1: From String Text
	21.2.2.2 Option 2: From Underlying Bytes
	Option 2: From Underlying Bytes

	21.2.3 Reading Questions
	21.2.4 Exercises

	21.3 JSON Data
	21.3.1 JSON from File
	21.3.2 JSON from Network
	21.3.2.1 JSON from String Data in Response
	JSON from String Data in Response
	21.3.2.2 JSON from Bytes Data in Response Body
	JSON from Bytes Data in Response Body

	21.3.3 Reading Questions
	21.3.4 Exercises

	21.4 XML Data
	21.4.1 XML from File Data
	21.4.2 From Network
	21.4.2.1 Using Parse on Bytes
	Using parse on Bytes
	21.4.2.2 Using fromstring() with Bytes and Strings
	Using fromstring() with Bytes and Strings

	21.4.3 Reading Questions
	21.4.4 Exercises


	22 Web Scraping
	22.1 HTML Structure and Its Representation of Data Sets
	22.1.1 HTML Tables
	22.1.2 HTML Lists
	22.1.3 Reading Questions

	22.2 Web Scraping Examples
	22.2.1 Formulating Requests for HTML
	22.2.2 Simple Table
	22.2.3 Wikipedia Table
	22.2.3.1 Goal
	Goal
	22.2.3.2 Discovery
	Discovery
	22.2.3.3 Data Extraction
	Data Extraction

	22.2.4 POST to Submit a Form
	22.2.4.1 Goal
	Goal
	22.2.4.2 Discovery
	Discovery
	22.2.4.3 Request and Data Extraction
	Request and Data Extraction

	22.2.5 Reading Questions
	22.2.6 Exercises


	23 RESTful Application Programming Interfaces
	23.1 Motivation and Background
	23.1.1 General API Characteristics
	General API Characteristics
	23.1.2 Principles of REpresentational State Transfer (REST)
	Principles of REpresentational State Transfer (REST)
	23.1.3 Reading Questions

	23.2 HTTP for REST API Requests
	23.2.1 Endpoints
	23.2.1.1 Root Endpoint
	Root Endpoint
	23.2.1.2 Non-Root Endpoint
	Non-Root Endpoint

	23.2.2 Path Parameters
	23.2.3 Query Parameters
	23.2.3.1 Search for Movies
	Search for Movies

	23.2.4 Header Parameters
	23.2.5 POST and POST Body
	23.2.6 Reading Questions
	23.2.7 Exercises

	23.3 Case Study
	23.3.1 Phase 1: Build a Table of Popular Movies
	23.3.1.1 Design a Function to Issue Request
	Design a Function to Issue Request
	23.3.1.2 Understand Results
	Understand Results
	23.3.1.3 Design Movie Table
	Design Movie Table
	23.3.1.4 Handle Multiple Pages
	Handle Multiple Pages

	23.3.2 Phase 2: Build Table of Top Cast Given Movie IDs 
	23.3.2.1 Understand Movie Credits API
	Understand Movie Credits API
	23.3.2.2 Goal: Design Cast Table
	Goal: Design Cast Table

	23.3.3 Summary Comments
	23.3.4 Reading Questions
	23.3.5 Exercises


	24 Authentication and Authorization
	24.1 Background
	24.1.1 Principals
	24.1.2 Authentication and Authorization Concepts
	24.1.3 Impersonation
	24.1.4 Encryption, Keys, and Signatures
	24.1.5 Reading Questions

	24.2 Authentication and Privacy
	24.2.1 HTTPS
	24.2.2 HTTP Authentication
	24.2.2.1 Basic Authentication
	Basic Authentication

	24.2.3 Authentication Considerations
	24.2.4 Reading Questions
	24.2.5 Exercises

	24.3 Authorization
	24.3.1 OAuth2 Background
	24.3.2 Delegated Authority: Authorization Code Grant Flow
	24.3.2.1 Pre-Stage: Application Registration with Provider
	24.3.2.2 Stage 1: Client Obtains Code with Cooperating Resource Owner
	24.3.2.3 Stage 2: Client Exchanges Code for Bearer Token
	24.3.2.4 Stage 3: Client Acquires Data Using Token
	24.3.2.5 Stage 4: Client Exchanges Refresh Token for New Token

	24.3.3 OAuth Dance Walkthrough
	24.3.3.1 Build User Auth URL
	24.3.3.2 Delegation by Resource Owner
	24.3.3.3 Exchange Code for Token by Client
	24.3.3.4 Data Requests

	24.3.4 Reading Questions
	24.3.5 Exercises



	A Custom Software
	A.1 The util Module
	A.1.1 buildURL
	Signature
	Description
	Parameters
	Return

	A.1.2 random_string
	Signature
	Description
	Parameters
	Return

	A.1.3 getLocalXML
	Signature
	Description
	Parameters
	Return

	A.1.4 read_creds
	Signature
	Description
	Parameters
	Return

	A.1.5 update_creds
	Signature
	Description
	Parameters
	Return

	A.1.6 print_text
	Signature
	Description
	Parameters
	Return

	A.1.7 print_data
	Signature
	Description
	Parameters
	Return

	A.1.8 print_xml
	Signature
	Description
	Parameters
	Return

	A.1.9 print_headers
	Signature
	Description
	Parameters
	Return


	A.2 The mysocket Module
	A.2.1 makeConnection
	Signature
	Description
	Parameters
	Return

	A.2.2 sendString
	Signature
	Description
	Parameters
	Return

	A.2.3 receiveTillClose
	Signature
	Description
	Parameters
	Return

	A.2.4 sendBytes
	Signature
	Description
	Parameters
	Return

	A.2.5 receiveTillSentinel
	Signature
	Description
	Parameters
	Return

	A.2.6 receiveBySize
	Signature
	Description
	Parameters
	Return

	A.2.7 sendCRLF
	Signature
	Description
	Parameters
	Return

	A.2.8 sendCRLFLines
	Signature
	Description
	Parameters
	Return



	References
	Index

